- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Bowern, Claire (1)
-
Colwell, Robert K. (1)
-
Evans, Nicholas (1)
-
Gavin, Michael C. (1)
-
Gray, Russell D. (1)
-
Greenhill, Simon J. (1)
-
Haynie, Hannah (1)
-
Haynie, Hannah J. (1)
-
Kavanagh, Patrick (1)
-
Kirby, Kathryn R. (1)
-
Marashian, Ali (1)
-
Pacheco Coelho, Marco Túlio (1)
-
Palmer, Alexis (1)
-
Pereira, Elisa Barreto (1)
-
Rangel, Thiago F. (1)
-
Rice, Enora (1)
-
Wense, Katharina (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Cross-lingual transfer learning is an invaluable tool for overcoming data scarcity, yet selecting a suitable transfer language remains a challenge. The precise roles of linguistic typology, training data, and model architecture in transfer language choice are not fully understood. We take a holistic approach, examining how both dataset-specific and fine-grained typological features influence transfer language selection for part-of-speech tagging, considering two different sources for morphosyntactic features. While previous work examines these dynamics in the context of bilingual biLSTMS, we extend our analysis to a more modern transfer learning pipeline: zero-shot prediction with pretrained multilingual models. We train a series of transfer language ranking systems and examine how different feature inputs influence ranker performance across architectures. Word overlap, type-token ratio, and genealogical distance emerge as top features across all architectures. Our findings reveal that a combination of typological and dataset-dependent features leads to the best rankings, and that good performance can be obtained with either feature group on its own.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Pacheco Coelho, Marco Túlio; Pereira, Elisa Barreto; Haynie, Hannah J.; Rangel, Thiago F.; Kavanagh, Patrick; Kirby, Kathryn R.; Greenhill, Simon J.; Bowern, Claire; Gray, Russell D.; Colwell, Robert K.; et al (, Proceedings of the Royal Society B: Biological Sciences)
An official website of the United States government
